【總結】【金榜教程】2021年高中數學第二章平面向量單元質量評估北師大版必修4(120分鐘150分)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(20212慈溪高一檢測)已知ABuur=(3,0),則|ABuur|等于()(A)2
2025-11-24 03:13
【總結】2021高中數學第二章平面向量綜合檢測B新人教A版必修41.設?1e與?2e是不共線的非零向量,且k?1e+?2e與?1e+k?2e共線,則k的值是()(A)1(B)-1(C)1?(D)任意不為零的實數2.在四邊形ABCD中,???AB=???D
2025-11-19 11:15
【總結】一、選擇題1.設k∈R,下列向量中,與向量a=(1,-1)一定不平行的向量是()A.b=(k,k)B.c=(-k,-k)C.d=(k2+1,k2+1)D.e=(k2-1,k2-1)【解析】由向量共線的判定條件,當k=0時,向量b,c與a平行;當k=±1
2025-11-18 23:43
【總結】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數就可以表示出來,如長度、質量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
2025-11-18 23:47
【總結】2.1.3向量的減法一.學習要點:向量的減法二.學習過程:一、復習:向量加法的法則:二、新課學習:1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2025-11-18 23:46
【總結】2.1.4數乘向量一.學習要點:數乘向量、向量共線和三點共線的判斷。二.學習過程:一、復習引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數λ與向量a的積是
【總結】章末質量評估(二)(時間:90分鐘滿分:120分)一、選擇題(共12小題,每小題5分,共60分)1.函數f(x)=12x-3的定義域是().A.(0,32)B.[32,+∞)C.(-∞,32]D.(32,+∞)解析由2x-30得
2025-11-10 20:37
【總結】【高考調研】2021年高中數學第二章數列章末測試題(B)新人教版必修5一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.等差數列-2,0,2,?的第15項為()A.112B.122C.132D.142答案C
2025-11-19 00:25
【總結】EFDCBA陜西省商南縣高級中學高一第二學期平面向量單元練習1.平面向量及其線性運算,正確的是()A.若cbba//,//,則ca//B.對于任意向量ba,,有baba???C.若ba?,則ba?或ba??D.對于任意向量ba,,有baba???2.(
2025-11-21 11:35
【總結】第二章一、選擇題1.已知數軸上A點坐標為-5,AB=-7,則B點坐標是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設a與b是兩個不共線的向量,且向量a+λb與-(b
【總結】來源教學內容:§教學目標1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會根據圖形判定是否平行、共線、相
2025-11-29 16:21
【總結】雙基限時練(二十)向量平行的坐標表示一、選擇題1.已知a=(-1,2),b=(2,y),若a∥b,則y的值是()A.1B.-1C.4D.-4解析由a∥b,得(-1)·y=2·2=4,∴y=-4,故選D.答案D2.已知A(k,1
2025-11-25 23:45
【總結】章末優(yōu)化總結,)平面向量的概念與性質理解向量、共線向量、相等向量、單位向量、向量的模、夾角等概念.突顯向量“形”的特征是充分運用向量并結合數學對象的幾何意義解題的重要前提.關于平面向量a,b,c有下列三個命題:①若b⊥c,則(a+c)&
2025-11-19 00:13
【總結】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a=bB.a≠bC.|a|=|b|D.a在c方向上的正射影的數量與b在c方向上的正射影的數量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
【總結】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探