【總結(jié)】神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)王荃2022年6月29日使用梯度下降算法進(jìn)行學(xué)習(xí)定義一個(gè)代價(jià)函數(shù)要對(duì)于所有的x,y(x)趨近于輸出a,C(w,b)0.??梯度下降假設(shè)C是一個(gè)只有兩個(gè)變量v1和v2的二元函數(shù),定義為V變化的向量,
2025-01-08 02:35
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)方法——原理及應(yīng)用張倩倩、孫晶人工神經(jīng)網(wǎng)絡(luò)方法?人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介?應(yīng)用實(shí)例——長(zhǎng)江三角洲地區(qū)城市體系的職能分類(lèi)?人工神經(jīng)網(wǎng)絡(luò),是一個(gè)具有高度非線性的超大規(guī)模連續(xù)時(shí)間動(dòng)力系統(tǒng),是由大量的處理單元(神經(jīng)元)廣泛互連而形成的網(wǎng)絡(luò)。是人
2025-01-05 22:58
【總結(jié)】第五章神經(jīng)網(wǎng)絡(luò)分類(lèi)器感知器算法神經(jīng)網(wǎng)絡(luò)分類(lèi)器感知器算法一、引言模式識(shí)別與人工智能是研究如何利用計(jì)算機(jī)實(shí)現(xiàn)人腦的一些功能。人工神經(jīng)網(wǎng)絡(luò)研究的發(fā)展:?1943年,提出形式神經(jīng)元的數(shù)學(xué)模型,人工神經(jīng)網(wǎng)絡(luò)研究的開(kāi)端。?1949年,提出神經(jīng)元的學(xué)習(xí)準(zhǔn)則,為神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法奠定了基礎(chǔ)。?50年代,研究類(lèi)似
2025-05-26 18:03
【總結(jié)】神經(jīng)網(wǎng)絡(luò)及其應(yīng)用5月20日第十四章基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)系統(tǒng)建模、辨識(shí)和預(yù)測(cè)?線性系統(tǒng)預(yù)測(cè)問(wèn)題?時(shí)域:ARMA模型?頻域:傳遞函數(shù)矩陣?非線性系統(tǒng)預(yù)測(cè)問(wèn)題?靜態(tài):多層前向網(wǎng)絡(luò)?動(dòng)態(tài):具有內(nèi)部反饋的動(dòng)態(tài)網(wǎng)絡(luò)基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)原理?正向建模?逆向建模電力系統(tǒng)負(fù)
2025-05-26 05:59
【總結(jié)】神經(jīng)網(wǎng)絡(luò)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)發(fā)展萌芽期?閥值加權(quán)和模型(MP模型)?Hebb學(xué)習(xí)律上世紀(jì)四十年代第一次高潮期?電子線路模擬感知器?大規(guī)模投入研究上世紀(jì)五六十年代沉寂期?異或運(yùn)算不可表示?多層感知器學(xué)習(xí)規(guī)則不知上世紀(jì)八十年代初復(fù)興期?Hopfield網(wǎng)絡(luò)?
2025-01-08 05:24
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)建模(ArtificialNeuronNets)一、引例?1981年生物學(xué)家格若根(W.Grogan)和維什(W.Wirth)發(fā)現(xiàn)了兩類(lèi)蚊子(或飛蠓midges).他們測(cè)量了這兩類(lèi)蚊子每個(gè)個(gè)體的翼長(zhǎng)和觸角長(zhǎng),數(shù)據(jù)如下:?翼長(zhǎng)觸角長(zhǎng)類(lèi)別?Af
2025-01-05 05:06
【總結(jié)】第7章計(jì)算智能–人工神經(jīng)網(wǎng)絡(luò)1第7章計(jì)算智能?人工神經(jīng)網(wǎng)絡(luò)?遺傳算法?螞蟻算法?專(zhuān)家系統(tǒng)第7章計(jì)算智能–人工神經(jīng)網(wǎng)絡(luò)2人工神經(jīng)網(wǎng)絡(luò)(ANN)人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwroks),就是基于模仿生物大腦的結(jié)構(gòu)和功能,經(jīng)過(guò)一
2025-01-05 05:05
【總結(jié)】BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來(lái)估計(jì)輸出層的直接前導(dǎo)層的誤差,再用這個(gè)誤差估計(jì)更前一層的誤差,如此一層一層的反傳下去,就獲得了所有其他各層的
2025-01-05 03:16
【總結(jié)】第2章神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)本章將闡述,作為“智能”物質(zhì)基礎(chǔ)的大腦是如何構(gòu)成和如何工作的?在構(gòu)造新型智能信息處理系統(tǒng)時(shí),可以從中得到什么啟示?§人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)基礎(chǔ)§人工神經(jīng)元模型§人工神經(jīng)網(wǎng)絡(luò)模型§神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)本章小結(jié)人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)
2025-01-05 02:40
【總結(jié)】14-7PID神經(jīng)網(wǎng)絡(luò)控制?闡述用PID神經(jīng)網(wǎng)絡(luò)進(jìn)行單變量、多變量非線性動(dòng)態(tài)系統(tǒng)的控制問(wèn)題?具有多輸入多輸出、內(nèi)部具有強(qiáng)耦合作用的多變量系統(tǒng),在工程中是不少見(jiàn)的,實(shí)現(xiàn)對(duì)多變量系統(tǒng)的有效控制的關(guān)鍵是解耦控制問(wèn)題24-7-1PID神經(jīng)網(wǎng)絡(luò)單變量控制1.控制結(jié)構(gòu)
2025-10-10 05:00
【總結(jié)】人工神經(jīng)元網(wǎng)絡(luò)(ANN)ArtificialNeuralNetwork生物神經(jīng)元及生物神經(jīng)網(wǎng)絡(luò)什么是人工神經(jīng)網(wǎng)絡(luò)?人工神經(jīng)網(wǎng)絡(luò)就是基于模仿生物大腦的結(jié)構(gòu)和功能而構(gòu)成的一種信息處理系統(tǒng)或計(jì)算機(jī)。生物神經(jīng)元及生物神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)的分類(lèi)按照網(wǎng)絡(luò)特性?靜態(tài)網(wǎng)絡(luò)?動(dòng)態(tài)網(wǎng)絡(luò)按照學(xué)習(xí)方法
2025-01-05 15:50
2025-01-05 15:32
【總結(jié)】第6章神經(jīng)網(wǎng)絡(luò)辨識(shí)及其應(yīng)用神經(jīng)網(wǎng)絡(luò)辨識(shí)的特點(diǎn)?不要求建立實(shí)際系統(tǒng)的辨識(shí)格式,即可省去系統(tǒng)結(jié)構(gòu)建模這一步驟;?可以對(duì)本質(zhì)非線性系統(tǒng)進(jìn)行辨識(shí);?辨識(shí)的收斂速度不依賴于待辨識(shí)系統(tǒng)的維數(shù),只于神經(jīng)網(wǎng)絡(luò)本身及其所采用的學(xué)習(xí)算法有關(guān);?在參數(shù)辨識(shí)中,神經(jīng)網(wǎng)絡(luò)的連接權(quán)值可以對(duì)應(yīng)于模型參數(shù),通過(guò)權(quán)值的調(diào)節(jié)可使網(wǎng)絡(luò)輸出逼近于系統(tǒng)輸出;
2025-01-05 15:31
【總結(jié)】1神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)基礎(chǔ)2信號(hào)和權(quán)值向量空間?將神經(jīng)網(wǎng)絡(luò)的輸入、輸出以及權(quán)值矩陣的行作為向量看待是非常有好處的。這些都是中的向量。是標(biāo)準(zhǔn)的n維歐基里德空間3線性向量空問(wèn)4如圖1所示。顯然它是一個(gè)向量空間,并且對(duì)于向量加和標(biāo)量乘全部滿足10個(gè)條件。的子集又將如何?考慮圖2中方框內(nèi)
2025-01-05 15:34
【總結(jié)】2022/2/2馬盡文1第2章前饋型人工神經(jīng)網(wǎng)絡(luò)?M-P模型?感知機(jī)模型與學(xué)習(xí)算法?多層感知機(jī)網(wǎng)絡(luò)?自適應(yīng)線性單元與網(wǎng)絡(luò)?非線性連續(xù)變換單元組成的前饋網(wǎng)絡(luò)?BP算法2022/2/2馬盡文2非線性連續(xù)變換單元組成的網(wǎng)絡(luò)由非線性連續(xù)變換單元組成的前饋網(wǎng)絡(luò),簡(jiǎn)稱(chēng)為BP(BackPropaga
2025-01-08 04:10