【總結(jié)】數(shù)學(xué)新課標(biāo)(RJ)八年級(jí)上冊(cè)課題學(xué)習(xí)最短路徑問題新知梳理?知識(shí)點(diǎn)最短路徑問題課題學(xué)習(xí)最短路徑問題類型:(1)兩點(diǎn)一線型的線段和最小值問題;(2)兩點(diǎn)兩線型的線段和最小值問題;(3)造橋選址問題.方法:借助軸對(duì)稱或平移知識(shí),化折為直,利用公理“兩點(diǎn)之間,線段最短”來求線段
2025-11-11 23:38
【總結(jié)】intdist[maxnum];//表示當(dāng)前點(diǎn)到源點(diǎn)的最短路徑長(zhǎng)度intprev[maxnum];//記錄當(dāng)前點(diǎn)的前一個(gè)結(jié)點(diǎn)intc[maxnum][maxnum];//記錄圖的兩點(diǎn)間路徑長(zhǎng)度intn,line;//圖的結(jié)點(diǎn)數(shù)和路徑數(shù)?voidDijkstra(intn,intv,int
2025-08-17 02:30
【總結(jié)】學(xué)習(xí)目標(biāo):短距離自主思考:(2分鐘)師友互助:(4分鐘)友情提示:(1)你是如何計(jì)算曲面上兩點(diǎn)之間的距離?(2)具體做法是什么?(3)你的依據(jù)是什么?(4)體現(xiàn)了什么數(shù)學(xué)思想?立體圖形中的最短距離溫故而知新【八年級(jí)導(dǎo)學(xué)P79】如圖是一個(gè)圓柱,底面周長(zhǎng)為4cm,高為
2025-08-07 15:05
【總結(jié)】摘要:主要介紹最短路徑問題中的經(jīng)典算法——迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法,以及在實(shí)際生活中的運(yùn)用。關(guān)鍵字:Dijkstra算法、Floyd算法、賦權(quán)圖、最優(yōu)路徑、Matlab 目錄 摘要············
2025-06-26 05:23
【總結(jié)】最短路徑與選址問題?最短路徑問題?選址問題對(duì)于許多地理問題,當(dāng)它們被抽象為圖論意義下的網(wǎng)絡(luò)圖時(shí),問題的核心就變成了網(wǎng)絡(luò)圖上的優(yōu)化計(jì)算問題。其中,最為常見的是關(guān)于路徑和頂點(diǎn)的優(yōu)選計(jì)算問題。在路徑的優(yōu)選計(jì)算問題中,最常見的是最短路徑問題;而在頂點(diǎn)的優(yōu)選計(jì)
2025-02-13 05:28
【總結(jié)】最短路徑分析功能實(shí)現(xiàn)專業(yè):地理信息系統(tǒng)年級(jí):620802姓名:齊鵬、楊一曼學(xué)號(hào):62080217、62080202指導(dǎo)教師:楊長(zhǎng)保實(shí)習(xí)單位:吉林大學(xué)朝陽(yáng)校區(qū)時(shí)間:2011年7月4日~2011年8月28日目錄一、繪制幾何網(wǎng)絡(luò)(以朝陽(yáng)校區(qū)為例) 1
2025-07-20 02:41
【總結(jié)】最短路徑專題含答案1.某同學(xué)的茶杯是圓柱體,如圖是茶杯的立體圖,左邊下方有一只螞蟻,從A處爬行到對(duì)面的中點(diǎn)B處,如果螞蟻爬行路線最短,請(qǐng)畫出這條最短路線圖. 解:如圖1,將圓柱的側(cè)面展開成一個(gè)長(zhǎng)方形,如圖示,則A,B分別位于如圖所示的位置,連接AB,即是這條最短路線圖. 問題:某正方形盒子,如圖左邊下方A處有一只螞蟻,從A處爬行到側(cè)棱G
2025-06-26 05:39
【總結(jié)】......最短路徑問題——和最小【方法說明】“和最小”問題常見的問法是,在一條直線上面找一點(diǎn),使得這個(gè)點(diǎn)與兩個(gè)定點(diǎn)距離的和最?。▽④婏嬹R問題).如圖所示,在直線l上找一點(diǎn)P使得PA+PB最?。?dāng)點(diǎn)P為直線AB′與直線l的交點(diǎn)時(shí),PA+P
2025-03-26 23:36
【總結(jié)】課題學(xué)習(xí)最短路徑問題相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海倫.有一天,一位將軍專程拜訪海倫,幾個(gè)小時(shí)過去了,馬太渴了,越走越慢,終于來到E地,發(fā)現(xiàn)不遠(yuǎn)處有一條筆直的小河l,請(qǐng)問將軍到河邊什么地方飲馬可使他所走的路線全程最短?El飲馬之后,將軍繼續(xù)沿著河邊趕路,正當(dāng)他又累又餓的時(shí)候,突然發(fā)現(xiàn)河對(duì)岸有一棵碩果累累
2025-06-16 18:35
【總結(jié)】課題學(xué)習(xí)最短路徑問題(第2課時(shí))問題1:如圖,A和B兩地在一條河的兩岸,現(xiàn)要在河上造一座橋MN,橋造在何處可使從A到B的路徑AMNB最短?(假定河的兩岸是平行的直線,橋要與河垂直。)ABMNab探索新知問題2:你能證明一下如果在不同于MN的位置造橋M/N/,距離是怎樣的,
2025-06-16 18:33
【總結(jié)】動(dòng)點(diǎn)問題《四邊形》復(fù)習(xí)專題——付捷如圖:已知正方形ABCD的邊長(zhǎng)為8,M在DC上,且DM=2,N是AC上的一動(dòng)點(diǎn),求DN+MN的最小值。ABCMND如圖,在四邊形ABCD中,AD∥BC,且ADBC,BC=6cm,P、Q分別從A,C同時(shí)出發(fā),P以1cm/s
2025-11-02 07:47
【總結(jié)】八年級(jí)數(shù)學(xué)動(dòng)點(diǎn)問題?1.(2012?常德)已知四邊形ABCD是正方形,O為正方形對(duì)角線的交點(diǎn),一動(dòng)點(diǎn)P從B開始,沿射線BC運(yùn)動(dòng),連接DP,作CN⊥DP于點(diǎn)M,且交直線AB于點(diǎn)N,連接OP,ON.(當(dāng)P在線段BC上時(shí),如圖1:當(dāng)P在BC的延長(zhǎng)線上時(shí),如圖2)(1)請(qǐng)從圖1,圖2中任選一圖證明下面結(jié)論:①BN=CP;②OP=ON,且OP⊥ON;(2)設(shè)AB=4,BP=x,試
2025-04-04 03:28
【總結(jié)】專業(yè)整理分享第一章平移、對(duì)稱與旋轉(zhuǎn)第4講利用軸對(duì)稱破解最短路徑問題一、學(xué)習(xí)目標(biāo)1.理解“直線上同一側(cè)兩點(diǎn)與此直線上一動(dòng)點(diǎn)距離和最小”問題通過軸對(duì)稱的性質(zhì)與作圖轉(zhuǎn)化為“兩點(diǎn)之間,線段最短”問題求解。(對(duì)稱背景圖)中有關(guān)最短路徑(線段之差最大值)問題借助軸對(duì)稱轉(zhuǎn)化為兩
2025-03-25 06:48
【總結(jié)】最短路徑問題教學(xué)內(nèi)容解析:本節(jié)課的主要內(nèi)容是利用軸對(duì)稱研究某些最短路徑問題,最短路徑問題在現(xiàn)實(shí)生活中經(jīng)常遇到,初中階段,主要以“兩點(diǎn)之間,線段最短”“三角形兩邊之和大于第三邊”為知識(shí)基礎(chǔ),有時(shí)還要借助軸對(duì)稱、平移變換進(jìn)行研究。本節(jié)課以數(shù)學(xué)史中的一個(gè)經(jīng)典故事----“將軍飲馬問題”為載體開展對(duì)“最短路徑問題”的課題研究
2025-03-27 23:03
【總結(jié)】課題學(xué)習(xí)最短路徑問題?學(xué)習(xí)目標(biāo):能利用軸對(duì)稱解決簡(jiǎn)單的最短路徑問題,體會(huì)圖形的變化在解決最值問題中的作用,感悟轉(zhuǎn)化思想.?學(xué)習(xí)重點(diǎn):利用軸對(duì)稱將最短路徑問題轉(zhuǎn)化為“兩點(diǎn)之間,線段最短”問題.課件說明如圖所示,從A地到B地有三條路可供選擇,你會(huì)選走哪條路最近?你的理由是什么??jī)牲c(diǎn)
2025-06-06 01:14