【總結(jié)】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對(duì)角,只有唯一的一組解;若給出的是小邊的對(duì)角,則結(jié)
2025-11-08 23:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2025-10-17 01:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問(wèn)題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡(jiǎn)單的實(shí)際問(wèn)題轉(zhuǎn)化為...
2025-10-19 16:14
【總結(jié)】第一篇: 教學(xué)設(shè)計(jì)示例(第一課時(shí)) 一、教學(xué)目標(biāo) 1.掌握正弦定理及其向量法推導(dǎo)過(guò)程; 2.掌握用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問(wèn)題. 二、教學(xué)重點(diǎn)正弦定理及其推導(dǎo)過(guò)程,正弦...
2025-09-27 04:13
【總結(jié)】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222
【總結(jié)】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的______等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推論cosA=_
2025-11-26 10:14
【總結(jié)】正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??si
2025-11-08 06:14
【總結(jié)】正弦定理和余弦定理的應(yīng)用知識(shí)點(diǎn):1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設(shè)、、是的角、、的對(duì)邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設(shè)A,B兩點(diǎn)在河的兩岸,一測(cè)量者在A點(diǎn)的同側(cè),在A所在的河岸邊選
2025-06-28 05:52
【總結(jié)】余弦定理(一)知識(shí)梳理余弦定理:(1)形式一:,,形式二:,,,(角到邊的轉(zhuǎn)換)(2)解決以下兩類問(wèn)題:1)、已知三邊,求三個(gè)角;(唯一解)2)、已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角;(唯一解)題型一根據(jù)三角形的三邊關(guān)系求角例1.已知△ABC中,sinA∶sinB∶sinC=(+1)∶(-1)∶,求最大角.解:∵===k∴sinA∶sinB
2025-06-08 00:36
【總結(jié)】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點(diǎn)D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
【總結(jié)】余弦定理(二)課時(shí)目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問(wèn)題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
【總結(jié)】2020年12月24日星期四首頁(yè)§余弦定理2020年12月24日星期四引入2sinsinsin(abcRABCRABC????為外 接圓的半徑)在一個(gè)三角形中,各邊的長(zhǎng)和它所對(duì)角的正弦的比相等。即:ABCac
2025-11-08 17:33
【總結(jié)】《正弦定理和余弦定理》典型例題透析類型一:正弦定理的應(yīng)用:例1.已知在中,,,,解三角形.思路點(diǎn)撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內(nèi)角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結(jié)升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問(wèn)題;2.數(shù)形結(jié)合將已知條件表示在示
2025-03-25 04:59
【總結(jié)】高考正弦定理和余弦定理練習(xí)題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2.2.△ABC中,a=,b=,sinB=,則符合條件的三角形有( )
2025-06-26 04:58
【總結(jié)】第一篇:《正弦定理和余弦定理》教學(xué)反思 《正弦定理、余弦定理》教學(xué)反思 我對(duì)教學(xué)所持的觀念是:數(shù)學(xué)學(xué)習(xí)的主要目的是:“在掌握知識(shí)的同時(shí),領(lǐng)悟由其內(nèi)容反映出來(lái)的數(shù)學(xué)思想方法,要在思維能力、情感態(tài)度與...
2025-09-24 14:50