【總結】3高一數學函數練習題一、求函數的定義域1、求下列函數的定義域:⑴⑵⑶2、設函數的定義域為,則函數的定義域為___;函數的定義域為________;3、若函數的定義域為,則函數的定義域是;函數的定義域為。4、知函數的定義域為,且函數的定義域存在,求實數的取值范圍。
2025-03-25 02:03
【總結】數學高中數學必修1第二章函數單調性和奇偶性專項練習一、函數單調性相關練習題1、(1)函數,{0,1,2,4}的最大值為_____.(2)函數在區(qū)間[1,5]上的最大值為_____,最小值為_____.2、利用單調性的定義證明函數在(-∞,0)上是增函數.3、判斷函數在(-1,+∞)上的單調性,并給予證明.4、畫出函數的圖像,并指出函數的單調區(qū)間.5、已
2025-06-22 01:09
【總結】......抽象函數的對稱性、奇偶性與周期性一、典例分析,當時,,則等于()(A);(B);(C);(D).例2.已知是定義在實數集上的函數,且,求
2025-07-27 14:56
【總結】函數的奇偶性高三備課組1.定義:設y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為偶函數。設y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為奇函數。如
2025-11-12 04:15
【總結】函數的奇偶性一、引入觀察下列圖片,你有何感受??觀察下列函數的圖象,從對稱的角度,你發(fā)現它們有什么共同特征??(1)y=x2;(2)y=x二、問題情境:yo?觀察下列函數的圖象,從對稱的角度,你發(fā)現它們有什么共同的特征??(1)y=x;
2025-11-12 00:18
【總結】函數的性質知識要點一、函數的奇偶性1.定義:如果對于函數f(x)定義域內的任意x都有f(-x)=-f(x),則稱f(x)為奇函數;如果對于函數f(x)定義域內的任意x都有f(-x)=f(x),則稱f(x)為偶函數。如果函數f(x)不具有上述性質,則f(x),則f(x)既是奇函數,又是偶函數。注意:(1)函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質
2025-06-18 20:33
【總結】澤國中學數學組觀察下列圖片,你有何感受?一、引入xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的自變量與函數值是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)
2025-10-28 17:17
【總結】奇偶性觀察下面三張圖片,它們有什么共同特征?觀察函數f(x)=x2和f(x)=|x|圖象并思考:(1)這兩個函數圖象有什么共同特征?(2)填函數值對應表,它們是如何體現這些特征的?x-3-2-10123f(x)=x2x-3-2-10123f(x)=|x|9410
2025-11-12 02:07
【總結】xyOxyOf(x)=x2f(x)=|x|x…-2-1012…y…41014…x…-2-1012…y…21012…問題:1、對定義域中的每一個x,-x是否也在定義域內?2、f(x)與f(-x)的值有什么
2025-01-12 10:09
【總結】,觀察圖片:一新課引入(1)已知函數f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2(2)已知f(x)=x3,求出f(-2),f(2),f(-1)
2025-10-25 17:55
【總結】一、單調性二、奇偶性三、周期性四、有界性第三節(jié)函數的幾種特性一、單調性定義設函數y=f(x)在數集X(X可以是f(x)的定義域也可以是定義域的一部分).如果對于任意的,當時,均有則稱函數y=f(x)在區(qū)間X上單調增加(或單調減少)
2025-10-03 14:11
【總結】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2025-11-08 22:49
【總結】函數的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數定義:如果對于函數定義域內的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數。奇函數定義:如果對于
2025-11-08 15:35
【總結】函數的基本性質——奇偶性1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧2.請分別畫出函數f(x)=x3與g(x)=x2的圖象.1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧1.奇函數、偶函數的定義講授新課1.奇函數、偶函數的定義奇函數:
2025-11-28 16:39
【總結】函數的奇偶性南京市三十九中學xyO如何用數學語言表述函數圖象關于y軸對稱呢?y=f(x)函數圖象關于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點A關于y軸的對稱點A’的坐標是_
2025-11-08 15:06