【正文】
分子生物學(xué)課程教學(xué)講義 朱玉賢第一講 序論二、現(xiàn)代分子生物學(xué)中的主要里程碑分子生物學(xué)是研究核酸、蛋白質(zhì)等所有生物大分子的形態(tài)、結(jié)構(gòu)特征及其重要性、規(guī)律性和相互關(guān)系的科學(xué),是人類從分子水平上真正揭開生物世界的奧秘,由被動地適應(yīng)自然界轉(zhuǎn)向主動地改造和重組自然界的基礎(chǔ)學(xué)科。當(dāng)人們意識到同一生物不同世代之間的連續(xù)性是由生物體自身所攜帶的遺傳物質(zhì)所決定的,科學(xué)家為揭示這些遺傳密碼所進行的努力就成為人類征服自然的一部分,而以生物大分子為研究對像的分子生物學(xué)就迅速成為現(xiàn)代社會中最具活力的科學(xué)。從1847年Schleiden和Schwann提出細胞學(xué)說,證明動、植物都是由細胞組成的到今天,雖然不過短短一百多年時間,我們對生物大分子細胞的化學(xué)組成卻有了深刻的認識。孟德爾的遺傳學(xué)規(guī)律最先使人們對性狀遺傳產(chǎn)生了理性認識,而Morgan的基因?qū)W說則進一步將性狀與基因相耦聯(lián),成為分子遺傳學(xué)的奠基石。Watson和Crick所提出的脫氧核糖酸雙螺旋模型,為充分揭示遺傳信息的傳遞規(guī)律鋪平了道路。在蛋白質(zhì)化學(xué)方面,繼Sumner在1936年證實酶是蛋白質(zhì)之后,Sanger利用紙電泳及層析技術(shù)于1953年首次闡明胰島素的一級結(jié)構(gòu),開創(chuàng)了蛋白質(zhì)序列分析的先河。而Kendrew和Perutz利用X射線衍射技術(shù)解析了肌紅蛋白(myoglobin)及血紅蛋白(hemoglobin)的三維結(jié)構(gòu),論證了這些蛋白質(zhì)在輸送分子氧過程中的特殊作用,成為研究生物大分子空間立體構(gòu)型的先驅(qū)。1910年,德國科學(xué)家Kossel第一個分離了腺嘌呤,胸腺嘧啶和組氨酸。1959年,美國科學(xué)家Uchoa第一次合成了核糖核酸,實現(xiàn)了將基因內(nèi)的遺傳信息通過RNA翻譯成蛋白質(zhì)的過程。同年,Kornberg實現(xiàn)了試管內(nèi)細菌細胞中DNA的復(fù)制。1962年,Watson(美)和Crick(英)因為在1953年提出DNA的反向平行雙螺旋模型而與Wilkins共獲Noble生理醫(yī)學(xué)獎,后者通過X射線衍射證實了WatsonCrick模型。1965年,法國科學(xué)家Jacob和Monod提出并證實了操縱子(operon)作為調(diào)節(jié)細菌細胞代謝的分子機制。此外,他們還首次推測存在一種與DNA序列相互補、能將它所編碼的遺傳信息帶到蛋白質(zhì)合成場所(細胞質(zhì))并翻譯產(chǎn)生蛋白質(zhì)的mRNA(信使核糖核酸)。 1972年,Paul Berg(美)第一次進行了DNA重組。 1977年,Sanger和Gilbert(英)第一次進行了DNA序列分析。1988年,McClintock由于在50年代提出并發(fā)現(xiàn)了可移動遺傳因子(jumping gene或稱mobile element)而獲得Nobel獎。 1993年,美國科學(xué)家Roberts和Sharp因發(fā)現(xiàn)斷裂基因(introns)而獲得Nobel獎。Mullis由于發(fā)明PCR儀而與加拿大學(xué)者Smith(第一個設(shè)計基因定點突變)共享Nobel化學(xué)獎。 此外,Griffith(1928)及Avery(1944)等人關(guān)于致病力強的光滑型(S型)肺炎鏈球菌DNA導(dǎo)致致病力弱的粗糙型(R型)細菌發(fā)生遺傳轉(zhuǎn)化的實驗;Hershey和Chase(1952)關(guān)于DNA是遺傳物質(zhì)的實驗;Crick于1954年所提出的遺傳信息傳遞規(guī)律(即中心法則):Meselson和Stahl(1958)關(guān)于DNA半保留復(fù)制的實驗以及Yanofsky和Brener(1961)年關(guān)于遺傳密碼三聯(lián)子的設(shè)想都為分子生物學(xué)的發(fā)展做出了重大貢獻。我國生物科學(xué)家吳憲20世紀20年代初回國后在協(xié)和醫(yī)科大學(xué)生化系與汪猷、張昌穎等人一道完成了蛋白質(zhì)變性理論、血液生化檢測和免疫化學(xué)等一系列有重大影響的研究,成為我國生物化學(xué)界的先驅(qū)。20世紀60年代、70年代和80年代,我國科學(xué)家相繼實現(xiàn)了人工全合成有生物學(xué)活性的結(jié)晶牛胰島素,解出了三方二鋅豬胰島素的晶體結(jié)構(gòu),采用有機合成與酶促相結(jié)合的方法完成了酵母丙氨酸轉(zhuǎn)移核糖核酸的人工全合成,在酶學(xué)研究、蛋白質(zhì)結(jié)構(gòu)及生物膜結(jié)構(gòu)與功能等方面都有世所矚目的建樹。 三、分子生物學(xué)的主要研究內(nèi)容所有生物體中的有機大分子都是以碳原子為核心,并以共價鍵的形式與氫、氧、氮及磷以不同方式構(gòu)成的。不僅如此,一切生物體中的各類有機大分子都是由完全相同的單體,如蛋白質(zhì)分子中的20種氨基酸、DNA及RNA中的8種堿基所組合而成的,由此產(chǎn)生了分子生物學(xué)的3條基本原理:1. 構(gòu)成生物體有機大分子的單體在不同生物中都是相同的;2. 生物體內(nèi)一切有機大分子的建成都遵循著各自特定的規(guī)則;3. 某一特定生物體所擁有的核酸及蛋白質(zhì)分子決定了它的屬性。分子生物學(xué)研究內(nèi)容:DNA重組技術(shù)基因工程基因表達調(diào)控核酸生物學(xué) 生物大分子結(jié)構(gòu)功能結(jié)構(gòu)分子生物學(xué)DNA重組技術(shù)(又稱基因工程)這是20世紀70年代初興起的技術(shù)科學(xué),目的是將不同DNA片段(如某個基因或基因的一部分)按照人們的設(shè)計定向連接起來,在特定的受體細胞中與載體同時復(fù)制并得到表達,產(chǎn)生影響受體細胞的新的遺傳性狀。嚴格地說,DNA重組技術(shù)并不完全等于基因工程,因為后者還包括其他可能使生物細胞基因組結(jié)構(gòu)得到改造的體系。DNA重組技術(shù)是核酸化學(xué)、蛋白質(zhì)化學(xué)、酶工程及微生物學(xué)、遺傳學(xué)、細胞學(xué)長期深入研究的結(jié)晶,而限制性內(nèi)切酶DNA連接酶及其他工具酶的發(fā)現(xiàn)與應(yīng)用則是這一技術(shù)得以建立的關(guān)鍵。DNA重組技術(shù)有著廣闊的應(yīng)用前景:DNA重組技術(shù)可用于定向改造某些生物基因組結(jié)構(gòu),使它們所具備的特殊經(jīng)濟價值或功能得以成百 上千倍的地提高。DNA重組技術(shù)還被用來進行基礎(chǔ)研究。如果說,分子生物學(xué)研究的核心是遺傳信息的傳遞和控制,那么根據(jù)中心法則,我們要研究的就是從DNA到RNA,再到蛋白質(zhì)的全過程,也即基因的表達與調(diào)控。在這里,無論是對啟動子的研究(包括調(diào)控元件或稱順式作用元件),還是對轉(zhuǎn)錄因子的克隆及分析,都離不開重組DNA技術(shù)的應(yīng)用。基因表達調(diào)控研究 因為蛋白質(zhì)分子參與并控制了細胞的一切代謝活動,而決定蛋白質(zhì)結(jié)構(gòu)和合成時序的信息都由核酸(主要是脫氧核糖核酸)分子編碼,表現(xiàn)為特定的核苷酸序列,所以基因表達實質(zhì)上就是遺傳信息的轉(zhuǎn)錄和翻譯。在個體生長發(fā)育過程中生物遺傳信息的表達按一定的時序發(fā)生變化(時序調(diào)節(jié)),并隨著內(nèi)外環(huán)境的變化而不斷加以修正(環(huán)境調(diào)控)。原核生物的基因組和染色體結(jié)構(gòu)都比真核生物簡單,轉(zhuǎn)錄和翻譯在同一時間和空間內(nèi)發(fā)生,基因表達的調(diào)控主要發(fā)生在轉(zhuǎn)錄水平。真核生物有細胞核結(jié)構(gòu),轉(zhuǎn)錄和翻譯過程在時間和空間上都被分隔開,且在轉(zhuǎn)錄和翻譯后都有復(fù)雜的信息加工過程,其基因表達的調(diào)控可以發(fā)生在各種不同的水平上。基因表達調(diào)控主要表現(xiàn)在信號傳導(dǎo)研究、轉(zhuǎn)錄因子研究及RNA剪輯3個方面。轉(zhuǎn)錄因子是一群能與基因539。端上游特定序列專一結(jié)合,從而保證目的基因以特定的強度在特定的時間與空間表達的蛋白質(zhì)分子。 真核基因在結(jié)構(gòu)上的不連續(xù)性是近10年來生物學(xué)上的重大發(fā)現(xiàn)之一。當(dāng)基因轉(zhuǎn)錄成premRNA后,除了在539。端加帽及339。端加多聚A[polyA]之外,還要將隔開各個相鄰編碼區(qū)的內(nèi)含子剪去,使外顯子(編碼區(qū))相連后成為成熟mRNA。研究發(fā)現(xiàn),有許多基因不是將它們的內(nèi)含子全部剪去,而是在不同的細胞或不同的發(fā)育階段有選擇地剪接其中部分內(nèi)含子,因此生成不同的mRNA及蛋白質(zhì)分子。 結(jié)構(gòu)分子生物學(xué) 生物大分子的結(jié)構(gòu)功能研究(又稱結(jié)構(gòu)分子生物學(xué)) 一個生物大分子,無論是核酸、蛋白質(zhì)或多糖,在發(fā)揮生物學(xué)功能時,必須具備兩個前提:首先,它擁有特定的空間結(jié)構(gòu)(三維結(jié)構(gòu));其次,在它發(fā)揮生物學(xué)功能的過程中必定存在著結(jié)構(gòu)和構(gòu)象的變化。結(jié)構(gòu)分子生物學(xué)就是研究生物大分子特定的空間結(jié)構(gòu)及結(jié)構(gòu)的運動變化與其生物學(xué)功能關(guān)系的科學(xué)。它包括結(jié)構(gòu)的測定、結(jié)構(gòu)運動變化規(guī)律的探索及結(jié)構(gòu)與功能相互關(guān)系的建立3個主要研究方向。最常見的研究三維結(jié)構(gòu)及其運動規(guī)律的手段是X射線衍射的晶體學(xué)(又稱蛋白質(zhì)晶體學(xué)),其次是用二維核磁共振和多維核磁研究液相結(jié)構(gòu),也有人用電鏡三維重組、電子衍射、中子衍射和各種頻譜學(xué)方法研究生物高分子的空間結(jié)構(gòu)。 第二講 染色體與DNA一、 DNA的組成與結(jié)構(gòu) Avery在1944年的研究報告中寫道:當(dāng)溶液中酒精的體積達到9/10時,有纖維狀物質(zhì)析出。如稍加攪拌,它就會象棉線在線軸上一樣繞在硬棒上,溶液中的其它成份則呈顆粒狀沉淀。溶解纖維狀物質(zhì)并重復(fù)數(shù)次,可提高其純度。這一物質(zhì)具有很強的生物學(xué)活性,初步實驗證實,它很可能就是DNA(誰能想到!)。對DNA分子的物理化學(xué)研究導(dǎo)致了現(xiàn)代生物學(xué)翻天覆地的革命,這更是Avery所沒有想到。所謂DNA的一級結(jié)構(gòu),就是指4種核苷酸的連接及其排列順序,表示了該DNA分子的化學(xué)構(gòu)成。核苷酸序列對DNA高級結(jié)構(gòu)的形成有很大影響,如BDNA中多聚(GC)區(qū)易出現(xiàn)左手螺旋DNA(ZDNA),而反向重復(fù)的DNA片段易出現(xiàn)發(fā)卡式結(jié)構(gòu)等。DNA不僅具有嚴格的化學(xué)組成,還具有特殊的高級結(jié)構(gòu),它主要以有規(guī)則的雙螺旋形式存在,其基本特點是: DNA分子是由兩條互相平行的脫氧核苷酸長鏈盤繞而成的。DNA分子中的脫氧核糖和磷酸交替連接,排在外側(cè),構(gòu)成基本骨架,堿基排列在內(nèi)側(cè)。兩條鏈上的堿基通過氫鍵相結(jié)合,形成堿基對,它的組成有一定的規(guī)律。這就是嘌呤與嘧啶配對,而且腺嘌呤(A)只能與胸腺嘧啶(T)配對,鳥嘌呤(G)只能與胞嘧啶(C)配對。如一條鏈上某一堿基是C,另一條鏈上與它配對的堿基必定是G。堿基之間的這種一一對應(yīng)的關(guān)系叫堿基互補配對原則。組成DNA分子的堿基雖然只有4種,它們的配對方式也只有A與T,C與G兩種,但是,由于堿基可以任何順序排列,構(gòu)成了DNA分子的多樣性。例如,某DNA分子的一條多核苷酸鏈有100個不同的堿基組成,它們的可能排列方式就是4100。 二、 DNA聚合酶與DNA的合成The accuracy of translation relies on the specificity of base pairing. The actual rate in bacteria seems to be 1081010. This corresponds to 1 error per genome per 1000 bacterial replication cycles, or 106 per gene per generation.DNA polymerase might improve the specificity of plementary base selection at either (or both) of two stages:1,It could scrutinize the ining base for the proper plementarity with the template base。 for example, by specifically recongnizing matching chemical features. This would be a presynthetic error control. 2,Or it could scrutinize the base pair after the new base has been added to the chain, and, in those cases in which a mistake has been made, remove the most recently added base. This would be a proofreading control. 三、DNA的生理意義及成分分析早在1928年英國科學(xué)家Griffith等人就發(fā)現(xiàn)肺炎鏈球菌使小鼠殘廢的原因是引起肺炎。細菌的毒性(致病力)是由細胞表面莢膜中的多糖所決定的。具有光滑外表的S型肺炎鏈球菌因為帶有莢膜多糖而都能使小鼠發(fā)病,而具有粗糙外表的R型因為沒有莢膜多糖而失去致病力(莢膜多糖能保護細菌免受運動白細胞攻擊)。首先用實驗證明基因就是DNA分子的是美國著名的微生物學(xué)家Avery。Avery等人將光滑型致病菌(S型)燒煮殺滅活性以后再侵染小鼠,發(fā)現(xiàn)這些死細菌自然喪失了致病能力。再用活的粗糙型細菌(R型)來侵染小鼠,也不能使之發(fā)病,因為粗糙型細菌天然無致病力。當(dāng)他們將經(jīng)燒煮殺死的S型細菌和活的R型細菌混合再感染小鼠時,實驗小鼠每次都死了。解剖死鼠,發(fā)現(xiàn)有大量活的S型(而不是R型)細菌。他們推測,死細菌中的某一成分棗轉(zhuǎn)化源(transforming principle)將無致病力的細菌轉(zhuǎn)化成病原細菌。美國冷泉港卡內(nèi)基遺傳學(xué)實驗室科學(xué)家Hershey和他的學(xué)生Chase在1952年從事噬菌體侵染細菌的實驗。噬菌體專門寄生在細菌體內(nèi)。它的頭、尾外部都有由蛋白質(zhì)組成的外殼,頭內(nèi)主要是DNA。噬菌體侵染細菌的過程可以分為以下5個步驟:①噬菌體用尾部的末端(基片、尾絲)吸附在細菌表面;②噬菌體通過尾軸把DNA全部注入細菌細胞內(nèi),噬菌體的蛋白質(zhì)外殼則留在細胞外面;③噬菌體的DNA一旦進入細菌體內(nèi),它就能利用細菌的生命過程合成噬菌體自身的DNA和蛋白質(zhì);④新合成的DNA和蛋白質(zhì)外殼,能組裝成許許多多與親代完全相同的子噬菌體;⑤子代噬菌體由于細菌的解體而被釋放出來,再去侵染其他細菌。他們發(fā)現(xiàn)被感染的細菌中帶有70%的噬菌體DNA,但只帶有20%的噬菌體蛋白質(zhì)。子代噬菌體中帶有50%標記的DNA,卻只有1%的標記蛋白質(zhì)。四. Cvalue和Cot1/2The total amount of DNA in the haploid genome is a characteristic of each living species known as Cvalue.Cot1/2 is the product of concentration and time required for 50% reassociation given in nuc