【總結(jié)】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2025-09-25 19:42
【總結(jié)】ProfLiubiyuMatrix(matrices)矩陣Acolumnvector行向量Asquarematrix方陣Arowvector列向量Adiagonalmatrix對(duì)角陣Anidentitymatrix單位陣Anuppertriangularmatrix上
2025-10-07 21:32
【總結(jié)】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項(xiàng)式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點(diǎn)重合時(shí),其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個(gè)二次齊次多項(xiàng)式.為了便于研究這個(gè)二次曲線的幾何性質(zhì),通過基變換(坐標(biāo)變換)
2025-10-10 01:08
【總結(jié)】第五章相似矩陣及二次型§1向量的內(nèi)積、長(zhǎng)度及正交性定義:設(shè)有n維向量令則稱[x,y]為向量x和y的內(nèi)積.1122[,]nnxyxyxyxy????向量的內(nèi)積1122,,nnxyxyxyxy????
2025-11-29 01:18
【總結(jié)】上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)1線性代數(shù)上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)2線性代數(shù)緒論上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)3問題:1、什么是線性代數(shù)?2、為什么要學(xué)線性代數(shù)?3、怎么做才能學(xué)好線性代數(shù)?上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)4一、什么是線性代數(shù)?(
2025-01-14 18:09
【總結(jié)】化二次型為標(biāo)準(zhǔn)形只含有平方項(xiàng)的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-19 08:22
【總結(jié)】第一章行列式1.證明:(1)首先證明是數(shù)域。因?yàn)?,所以中至少含有兩個(gè)復(fù)數(shù)。任給兩個(gè)復(fù)數(shù),我們有。因?yàn)槭菙?shù)域,所以有理數(shù)的和、差、積仍然為有理數(shù),所以。如果,則必有不同時(shí)為零,從而。又因?yàn)橛欣頂?shù)的和、差、積、商仍為有理數(shù),所以。綜上所述,我們有是數(shù)域。(2)類似可證明是數(shù)域,這兒是一個(gè)素?cái)?shù)。(3)下面證明:若為互異素?cái)?shù),則。(
2025-06-28 20:38
【總結(jié)】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽(yáng)、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時(shí),計(jì)劃講授前五章,平時(shí)成績(jī)占20%,期末成績(jī)占80%。一、學(xué)習(xí)必要性二、課程特點(diǎn)1、線性代數(shù)
2025-01-19 10:48
【總結(jié)】分塊矩陣?分塊矩陣的概念?分塊矩陣的運(yùn)算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個(gè)小矩陣這些小矩陣稱為的以子塊
2025-01-17 09:37
【總結(jié)】線性代數(shù)習(xí)題及答案習(xí)題一1.求下列各排列的逆序數(shù).(1)341782659;(2)987654321;(3)n(n?1)…321;(4)13…(2n?1)(2n)(2n?2)…2.【解】(1)τ(341782659)=11;(2)τ(987654321)=36;(3)
2025-01-09 10:34
【總結(jié)】《線性代數(shù)與解析幾何》練習(xí)題行列式部分一.填空題:1.若排列1274569是偶排列,則2.已知是五階行列式中的一項(xiàng),且?guī)д?hào),其中(則3.設(shè)是n階可逆陣,且,則,(為常數(shù))4.已知用表示D的元素的代數(shù)余子式,則,,行列式5.設(shè)有四階矩陣,其中均為4維列向
2025-06-28 20:31
【總結(jié)】利用范德蒙行列式計(jì)算例計(jì)算利用范德蒙行列式計(jì)算行列式,應(yīng)根據(jù)范德蒙行列式的特點(diǎn),將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計(jì)算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-04-30 05:22
【總結(jié)】說(shuō)明:本次課件不作為課程內(nèi)容,沒有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡(jiǎn)介】在計(jì)算機(jī)日益發(fā)展的今天,線性代數(shù)起著越來(lái)越重要的作用。線性代數(shù)起源于解線性方程組的問題,而利用矩陣來(lái)求解線性方程組的Gauss消元法至今仍是十分有效的計(jì)算機(jī)求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個(gè)重要工具,利用矩陣的
2025-02-22 00:04
2025-05-01 22:18
【總結(jié)】2022-2022-1線性代數(shù)期末考試試卷(A卷)一、單項(xiàng)選擇(20分=4分?5):1.112233440000()00ababbaba?(A)12341234aaaabbbb?,(B)12341234aaaa
2025-01-09 01:17