【正文】
畢業(yè)設(shè)計(jì) (論文 )報(bào)告 院(系) 電氣工程學(xué)院 專 業(yè) 電氣工程及 其自動(dòng)化 設(shè)計(jì)(論文)題目 含 DG 配網(wǎng)智能電流保護(hù)研究 起 止 日 期 2020 年 3月 05日 ~2020年 6月 10日 設(shè) 計(jì) 地 點(diǎn) 動(dòng)力樓 117 Study on the distribution work adaptive over current protection A Dissertation Submitted to Southeast University For the Academic Degree of Bachelor of Engineering By YUAN Rulong Supervised by Prof. LU Yuping School of Electrical Engineering Southeast University May,2020 摘要 I 摘 要 能源是人類社會(huì)存在和發(fā)展的物質(zhì)基礎(chǔ),然而近年來(lái),隨著發(fā)展的加速,人類對(duì)能源的需求越來(lái)越大,一次能源面臨枯竭,生態(tài)環(huán)境亦遭受破壞。為了應(yīng)對(duì)能源的潛在危機(jī)和生態(tài)環(huán)境的不斷惡化,許多國(guó)家在進(jìn)行能源結(jié)構(gòu)的調(diào)整過(guò)程中,將分布式電源放在了相當(dāng)重要的位置上,分布式電源作為一種高效、可靠、環(huán)保的發(fā)電方式,在世界各地已得到了迅速的發(fā)展。 然而,大量分布式電源接入配電網(wǎng),會(huì)對(duì)配電系統(tǒng)的繼電保護(hù)產(chǎn)生深刻的影響:中國(guó)城鄉(xiāng)大多數(shù)的配電網(wǎng)仍以單電源放射狀鏈?zhǔn)浇Y(jié)構(gòu)為主,當(dāng)前配網(wǎng)的保護(hù)也是以此為基礎(chǔ)進(jìn)行設(shè)計(jì)的。分布式電源的 接入,將會(huì)改變傳統(tǒng)配電網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和潮流方向,使配電網(wǎng)的運(yùn)行變得更加的復(fù)雜多變,原有繼電保護(hù)設(shè)計(jì)整定的基礎(chǔ)發(fā)生了改變,使得原有的的三段式電流保護(hù)的整定配合變得十分困難,會(huì)出現(xiàn)靈敏度降低、拒動(dòng)、誤動(dòng)等一系列問(wèn)題,給電力系統(tǒng)的安全、穩(wěn)定運(yùn)行帶來(lái)了極大的隱患。因此研究 DG對(duì)傳統(tǒng)配電網(wǎng)三段式電流保護(hù)帶來(lái)的影響以及提出應(yīng)對(duì)策略,對(duì)未來(lái)分布式發(fā)電技術(shù)的應(yīng)用和發(fā)展具有非常重要的意義。 本文以典型 10kV配電網(wǎng)為例,首先從分布式電源的接入位置、數(shù)量、故障點(diǎn)位置、接入容量等因素出發(fā),考慮接入 DG對(duì)配電網(wǎng)可能產(chǎn)生的影響進(jìn)行定 性分析,針對(duì)分析結(jié)果,提出一種針對(duì)含 DG的配電網(wǎng)智能電流保護(hù)方案。該方案基于相鄰線路的通信來(lái)實(shí)現(xiàn)故障路段的識(shí)別,通過(guò)部分保護(hù)加裝方向性元件,和斷路器實(shí)現(xiàn)故障段的切除,以此為基礎(chǔ),并考慮多 DG的情況,對(duì)保護(hù)裝置的整定值進(jìn)行重新修改整定,并計(jì)算基于該保護(hù)方案約束條件的 DG的最大準(zhǔn)入容量,最后,通過(guò) matlab軟件進(jìn)行仿真,驗(yàn)證方案的可行性。 關(guān)鍵字: 分布式電源( DG);配電網(wǎng);三段式電流保護(hù);準(zhǔn)入容量 Abstract I ABSTRACT Energy is basis for the existence and development of human society. However, these years, with the accelerated development of our society, our need for energy is increasing greatly. To make matters worse, the primary energy is dying up and ecological environment is also destroyed. So, in response to the potential energy crisis and destroyed ecological environment, the Distributed Generation is predicted to play a quite important role in the power system because of its high efficiency, environmentalfriendly, and reliable during the adjustment of energy structure in many countries. So far, the distributed generation has been rapid developed around the world. However, with the interconnection of a large number of distributed generation to distribution work, it will have a profound impact on the protection of distribution systems. Most distribution systems especially rural systems are operated in a radial configuration supplied by one generation, and the protection of distribution systems are based on this configuration. The access of distributed generation, will greatly change the topology of the distribution work, and will make the power flow in multiple directions, which will deeply affect distribution work operating and controlling to make it more plex. The basis of the original protection design has changed, which makes original protection system no longer applicable or bring traditional protection system new problems, such as sensitivity decrease, mis operation and malfunction, which will bring great risks to power system safe and stable operation. therefore it is very necessary to analyse the influence of the distributed generation to the distribution work protection and propose coping strategies, which is of great significance for the application and development of distributed generation technologies. This paper establishes a typical 10kV distribution work, and based on this,it analyses how different location, capacity, quantity of distribution generation and fault location and other factors affect the traditional distribution work protection. And against the results, it proposes intelligent protection schemes in the light of the traditional distribution work including DG. The program is based on puter or munication to collect information between adjacent lines to achieve the identification of fault sections, then by mainly installing the direction elements and circuit breakers to cut off the fault sections. As a basis, considering more DGs interconnection, it needs to modify partial protection settings, and calculate the maximum capacity of DG allowed to interconnect to the distribution work. And Abstract II finally it uses MATLAB to simulate and verify the feasibility. KEY WORDS: distributed generation。 distribution work。 3sectional current protection。 peration level。 目錄 III 目 錄 摘 要 .............................................................................................................................. I ABSTRACT ...................................................................................................................... I 目 錄 ........................................................................................................................... III 第一章 緒論 .................................................................................................................... 1 ................................................................................................... 1 ............................................................................... 1 .................................................................................. 1 ......................................................................................... 3 ....................................................................... 3 .............................................. 3 DG的配電網(wǎng)保護(hù)的對(duì)策研究 ...................................................... 4 的主要工作 ................................................................................................... 4 第二章 分布式發(fā)電技術(shù)與配電網(wǎng)繼電保護(hù)介紹 ................................................................ 5 ..................................................................................... 5 ............................................................................................... 5 ( PV) ........................................................................................ 5 ( wind power