【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第1課時(shí)等比數(shù)列的概念及通項(xiàng)公式課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)從1979年至1999年在我國累計(jì)推廣種植雜交水稻35億多畝,增產(chǎn)稻谷3500億公斤.年增稻谷
2025-11-08 03:39
【總結(jié)】復(fù)習(xí):1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項(xiàng)公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:“
2025-11-08 19:35
【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第3課時(shí)等比數(shù)列的前n項(xiàng)和課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)國際象棋起源于古代印度.相傳國王要獎(jiǎng)賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-11-08 19:50
【總結(jié)】敬業(yè)、協(xié)作、啟智、進(jìn)取第1頁共4頁《等比數(shù)列的前n項(xiàng)和》(第一課時(shí))導(dǎo)學(xué)案臨潼區(qū)華清中學(xué)徐立宏【教學(xué)目標(biāo)】知識(shí)與技能1.理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;2.掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡單問題.過程與方法1.提高學(xué)生的建模意識(shí)及探究問題、分析與解決問題的能
2025-11-15 17:07
【總結(jié)】聽課記錄2016年11月16日授課教師葉麗麗學(xué)科數(shù)學(xué)學(xué)校班級(jí)河田中學(xué)高三(20)課題等比數(shù)列及基本概念其相關(guān)性質(zhì)課型復(fù)習(xí)課1、導(dǎo)入(由教材例題直接引入,PPT展示)1.(必修5P55習(xí)題2(1)改編)設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,若a1=1,a6=32,則S3=______
2025-04-04 05:15
【總結(jié)】2.等比數(shù)列的概念及通項(xiàng)公式1.從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比.2.等比數(shù)列{an}的通項(xiàng)公式an=a1·qn-1(q≠0).3.如果a、G、b三個(gè)數(shù)滿足G2=G稱為a與b的等比中項(xiàng).4.等比數(shù)列的性質(zhì).
2025-11-26 00:28
2025-11-29 13:12
【總結(jié)】§等比數(shù)列2.等比數(shù)列自主學(xué)習(xí)知識(shí)梳理1.如果一個(gè)數(shù)列從第________項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的________都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的________,通常用字母q表示(q≠0).2.等比數(shù)列的通項(xiàng)公式:____________.3.等
2025-11-10 23:20
【總結(jié)】主講老師:陳震等比數(shù)列的前n項(xiàng)和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=______________=_____;當(dāng)q=1時(shí),Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
2025-11-26 10:13
【總結(jié)】等比數(shù)列的概念與通項(xiàng)公式(1)班級(jí)學(xué)號(hào)姓名學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.通過觀察實(shí)例,模仿等差數(shù)列概念歸納出等比數(shù)列的概念并能用符號(hào)表示;2.能根據(jù)等比數(shù)列概念,用累乘的方法推導(dǎo)等比數(shù)列通項(xiàng)公式;3.初步運(yùn)用等比數(shù)列的通項(xiàng)公式求相關(guān)的量.教教學(xué)學(xué)重重難難點(diǎn)點(diǎn)
2025-11-10 19:35
【總結(jié)】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時(shí),Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時(shí),Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡單問題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
【總結(jié)】§等比數(shù)列§等比數(shù)列考點(diǎn)探究·挑戰(zhàn)高考考向瞭望·把脈高考雙基研習(xí)·面對(duì)高考雙基研習(xí)?面對(duì)高考基礎(chǔ)梳理1.等比數(shù)列的相關(guān)概念及公式相關(guān)名詞等比數(shù)列{an}的相關(guān)概念及公式定義如果一個(gè)數(shù)列從第2項(xiàng)起,
2025-05-07 12:06