freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全國卷高考圓錐曲線真題答案-文庫吧

2025-07-21 02:43 本頁面


【正文】 且A、M、B、N四點(diǎn)在同一圓上,求l的方程.【分析】(Ⅰ)設(shè)點(diǎn)Q的坐標(biāo)為(x0,4),把點(diǎn)Q的坐標(biāo)代入拋物線C的方程,求得x0=,根據(jù)|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)設(shè)l的方程為 x=my+1 (m≠0),代入拋物線方程化簡,利用韋達(dá)定理、中點(diǎn)公式、弦長公式求得弦長|AB|.把直線l′的方程代入拋物線方程化簡,利用韋達(dá)定理、弦長公式求得|MN|.由于MN垂直平分線段AB,故AMBN四點(diǎn)共圓等價(jià)于|AE|=|BE|=|MN|,由此求得m的值,可得直線l的方程.【解答】解:(Ⅰ)設(shè)點(diǎn)Q的坐標(biāo)為(x0,4),把點(diǎn)Q的坐標(biāo)代入拋物線C:y2=2px(p>0),可得x0=,∵點(diǎn)P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=,求得 p=2,或 p=﹣2(舍去).故C的方程為 y2=4x.(Ⅱ)由題意可得,直線l和坐標(biāo)軸不垂直,y2=4x的焦點(diǎn)F(1,0),設(shè)l的方程為 x=my+1(m≠0),代入拋物線方程可得y2﹣4my﹣4=0,顯然判別式△=16m2+16>0,y1+y2=4m,y1?y2=﹣4.∴AB的中點(diǎn)坐標(biāo)為D(2m2+1,2m),弦長|AB|=|y1﹣y2|==4(m2+1).又直線l′的斜率為﹣m,∴直線l′的方程為 x=﹣y+2m2+3.過F的直線l與C相交于A、B兩點(diǎn),若AB的垂直平分線l′與C相交于M、N兩點(diǎn),把線l′的方程代入拋物線方程可得 y2+y﹣4(2m2+3)=0,∴y3+y4=,y3?y4=﹣4(2m2+3).故線段MN的中點(diǎn)E的坐標(biāo)為(+2m2+3,),∴|MN|=|y3﹣y4|=,∵M(jìn)N垂直平分線段AB,故AMBN四點(diǎn)共圓等價(jià)于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=,化簡可得 m2﹣1=0,∴m=177。1,∴直線l的方程為 x﹣y﹣1=0,或 x+y﹣1=0.【點(diǎn)評(píng)】本題主要考查求拋物線的標(biāo)準(zhǔn)方程,直線和圓錐曲線的位置關(guān)系的應(yīng)用,韋達(dá)定理、弦長公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于難題. 6.(2013?新課標(biāo)Ⅱ)平面直角坐標(biāo)系xOy中,過橢圓M:(a>b>0)右焦點(diǎn)的直線x+y﹣=0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.(Ⅰ)求M的方程(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.【分析】(Ⅰ)把右焦點(diǎn)(c,0)代入直線可解得c.設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)P(x0,y0),利用“點(diǎn)差法”即可得到a,b的關(guān)系式,再與a2=b2+c2聯(lián)立即可得到a,b,c.(Ⅱ)由CD⊥AB,可設(shè)直線CD的方程為y=x+t,與橢圓的方程聯(lián)立得到根與系數(shù)的關(guān)系,即可得到弦長|CD|.把直線x+y﹣=0與橢圓的方程聯(lián)立得到根與系數(shù)的關(guān)系,即可得到弦長|AB|,利用S四邊形ACBD=即可得到關(guān)于t的表達(dá)式,利用二次函數(shù)的單調(diào)性即可得到其最大值.【解答】解:(Ⅰ)把右焦點(diǎn)(c,0)代入直線x+y﹣=0得c+0﹣=0,解得c=.設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)P(x0,y0),則,相減得,∴,∴,又=,∴,即a2=2b2.聯(lián)立得,解得,∴M的方程為.(Ⅱ)∵CD⊥AB,∴可設(shè)直線CD的方程為y=x+t,聯(lián)立,消去y得到3x2+4tx+2t2﹣6=0,∵直線CD與橢圓有兩個(gè)不同的交點(diǎn),∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).設(shè)C(x3,y3),D(x4,y4),∴,.∴|CD|===.聯(lián)立得到3x2﹣4x=0,解得x=0或,∴交點(diǎn)為A(0,),B,∴|AB|==.∴S四邊形ACBD===,∴當(dāng)且僅當(dāng)t=0時(shí),四邊形ACBD面積的最大值為,滿足(*).∴四邊形ACBD面積的最大值為.【點(diǎn)評(píng)】本題綜合考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、“點(diǎn)差法”、中點(diǎn)坐標(biāo)公式、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到一元二次方程根與系數(shù)的關(guān)系、弦長公式、四邊形的面積計(jì)算、二次函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查了推理能力、數(shù)形結(jié)合的思想方法、計(jì)算能力、分析問題和解決問題的能力. 7.(2013?新課標(biāo)Ⅰ)已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.(Ⅰ)求C的方程;(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時(shí),求|AB|.【分析】(I)設(shè)動(dòng)圓的半徑為R,由已知?jiǎng)訄AP與圓M外切并與圓N內(nèi)切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由橢圓的定義可知:動(dòng)點(diǎn)P的軌跡是以M,N為焦點(diǎn),4為長軸長的橢圓,求出即可;(II)設(shè)曲線C上任意一點(diǎn)P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,當(dāng)且僅當(dāng)⊙P的圓心為(2,0)R=2時(shí),其半徑最大,其方程為(x﹣2)2+y2=4.分①l的傾斜角為90176。,此時(shí)l與y軸重合,可得|AB|.②若l的傾斜角不為90176。,由于⊙M的半徑1≠R,可知l與x軸不平行,設(shè)l與x軸的交點(diǎn)為Q,根據(jù),可得Q(﹣4,0),所以可設(shè)l:y=k(x+4),與橢圓的方程聯(lián)立,得到根與系數(shù)的關(guān)系利用弦長公式即可得出.【解答】解:(I)由圓M:(x+1)2+y2=1,可知圓心M(﹣1,0);圓N:(x﹣1)2+y2=9,圓心N(1,0),半徑3.設(shè)動(dòng)圓的半徑為R,∵動(dòng)圓P與圓M外切并與圓N內(nèi)切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由橢圓的定義可知:動(dòng)點(diǎn)P的軌跡是以M,N為焦點(diǎn),4為長軸長的橢圓,∴a=2,c=1,b2=a2﹣c2=3.∴曲線C的方程為(x≠﹣2).(II)設(shè)曲線C上任意一點(diǎn)P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,當(dāng)且僅當(dāng)⊙P的圓心為(2,0)R=2時(shí),其半徑最大,其方程為(x﹣2)2+y2=4.①l的傾斜角為90176。,則l與y軸重合,可得|AB|=.②若l的傾斜角不為90176。,由于⊙M的半徑1≠R,可知l與x軸不平行,設(shè)l與x軸的交點(diǎn)為Q,則,可得Q(﹣4,0),所以可設(shè)l:y=k(x+4),由l于M相切可得:,解得.當(dāng)時(shí),聯(lián)立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于對(duì)稱性可知:當(dāng)時(shí),也有|AB|=.綜上可知:|AB|=或.【點(diǎn)評(píng)】本題綜合考查了兩圓的相切關(guān)系、直線與圓相切問題、橢圓的定義及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、弦長公式等基礎(chǔ)知識(shí),需要較強(qiáng)的推理能力和計(jì)算能力及其分類討論的思想方法. 8.(2014?滄州校級(jí)一模)已知雙曲線C:=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為.(I)求a,b;(II)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點(diǎn),且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.【分析】(I)由題設(shè),可由離心率為3得到參數(shù)a,b的關(guān)系,將雙曲線的方程用參數(shù)a表示出來,再由直線建立方程求出參數(shù)a即可得到雙曲線的方程;(II)由(I)的方程求出兩焦點(diǎn)坐標(biāo),設(shè)出直線l的方程設(shè)A(x1,y1),B(x2,y2),將其與雙曲線C的方程聯(lián)立,得出x1+x2=,再利用|AF1|=|BF1|建立關(guān)于A,B坐標(biāo)的方程,得出兩點(diǎn)橫坐標(biāo)的關(guān)系,由此方程求出k的值,得出直線的方程,從而可求得:|AF2|、|AB|、|BF2|,再利用等比數(shù)列的性質(zhì)進(jìn)行判斷即可證明出結(jié)論.【解答】解:(I)由題設(shè)知=3,即=9,故b2=8a2所以C的方程為8x2﹣y2=8a2將y=2代入上式,并求得x=177。,由題設(shè)知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F(xiàn)1(﹣3,0),F(xiàn)2(3,0),C的方程為8x2﹣y2=8 ①由題意,可設(shè)l的方程為y=k(x﹣3),|k|<2代入①并化簡得(k2﹣8)x2﹣6k2x+9k2+8=0設(shè)A(x1
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1