【總結(jié)】......有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.
2025-06-22 16:01
【總結(jié)】圓錐曲線方程—————————————————————————————————————【說明】 本試卷分為第Ⅰ、Ⅱ卷兩部分,請將第Ⅰ卷選擇題的答案填入答題格內(nèi),第Ⅱ卷可在各題后直接作答,共150分,考試時間120分鐘.第Ⅰ卷 (選擇題 共60分)題號123456789101112答案
2025-07-22 20:46
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件79《圓錐曲線-圓錐曲線的應(yīng)用》圓錐曲線定義應(yīng)用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構(gòu)成的三角形,常用第一定義結(jié)合正余弦定理;·涉及焦點、準(zhǔn)線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2025-11-02 08:49
【總結(jié)】圓錐曲線的應(yīng)用高三備課組一、基本知識概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學(xué)模型是實現(xiàn)應(yīng)用問題向數(shù)學(xué)問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應(yīng)用,說明數(shù)學(xué)建模的方法,理解函數(shù)與方程、等價轉(zhuǎn)化、分類討論等數(shù)學(xué)思想。二、例題:例題1:設(shè)有一顆慧星沿一橢圓軌道
2025-10-31 08:48
【總結(jié)】橢圓必背的經(jīng)典結(jié)論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-24 04:00
【總結(jié)】學(xué)科:數(shù)學(xué)復(fù)習(xí)內(nèi)容:圓錐曲線【知能目標(biāo)】,橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),雙曲線的標(biāo)準(zhǔn)方程,雙曲線的幾何性質(zhì),等軸雙曲線與共軛雙曲線的定義,拋物線的標(biāo)準(zhǔn)方程,拋物線的幾何性質(zhì);【綜合脈絡(luò)】【知識歸納】一、橢圓1.定義(1)第一定義:若F1,F(xiàn)2是兩定點,P為動點,且(為常數(shù))則P點的軌跡是橢圓。(2)第二定
2025-01-14 04:02
【總結(jié)】專題研究:圓錐曲線【定義法的應(yīng)用】一.利用圓錐曲線定義巧求離心率例1.F1、F2是橢圓的兩個焦點,過F2作一條直線交橢圓于P、Q兩點,使PF1⊥PQ,且|PF1|=|PQ|,求橢圓的離心率e.解:設(shè)|PF1|=t,則|PQ|=t,|F1Q|=2t,由橢圓定義有:|PF1|+|PF2|=|QF
2025-01-09 11:01
【總結(jié)】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標(biāo)準(zhǔn)方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準(zhǔn)線、焦半徑、通徑等5、橢圓與直線的位置關(guān)系二、雙曲線1、定義(第一、第二定義)2、標(biāo)準(zhǔn)方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準(zhǔn)線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結(jié)】478圓錐曲線:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)2a,且此常數(shù)2a一定要大于21FF,當(dāng)常數(shù)等于21FF時,軌跡是線段F1F2,當(dāng)常數(shù)小于21FF時,無軌跡;雙曲線中,與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a,且此
2025-08-12 17:05
【總結(jié)】......中點弦問題專題練習(xí) 一.選擇題(共8小題)1.已知橢圓,以及橢圓內(nèi)一點P(4,2),則以P為中點的弦所在直線的斜率為( ?。.B.C.2D.﹣22.已知A(
2025-03-25 00:04
【總結(jié)】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
【總結(jié)】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2025-06-24 02:10
【總結(jié)】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)
2025-06-23 07:21
【總結(jié)】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-17 13:13
【總結(jié)】一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩條切線
2025-06-24 18:05