【正文】
不能造成圖形的不連通。 (3)接著去掉 (v3,v2) v1 v2 v5 v3 v4 v6 v7 v8 v9 1 2 3 依序去掉相連的邊但必須注意下列兩條件: a、如果某邊去掉后會(huì)導(dǎo)致某點(diǎn)無(wú)連通的 邊,則此頂點(diǎn)亦可去。 b、去某邊后不能造成圖形的不連通。 …… v1 v2 v5 v3 v4 v6 v7 v8 v9 1 2 3 v1 v2 v5 v3 v4 v6 v7 v8 v9 1 2 3 4 5 6 7 8 依序去掉相連的邊但必須注意下列兩條件: a、如果某邊去掉后會(huì)導(dǎo)致某點(diǎn)無(wú)連通的 邊,則此頂點(diǎn)亦可去。 b、去某邊后不能造成圖形的不連通。 這時(shí),如果去掉 (v6,v5)將導(dǎo)致圖不連通 v1 v2 v5 v3 v4 v6 v7 v8 v9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 V2v4v3v2v1v4v5v9v6v8v9v7v6v5v2 Euler回路: 從上例可知, Euler回路不唯一。 23 2022/2/13 Euler circuit and paths in directed graphs 有向圖中的歐拉回路與歐拉通路 A directed multigraph having no isolated vertices has an Euler circuit if and only if 一個(gè)沒(méi)有孤立頂點(diǎn)的有向多重圖含有歐拉回路的充要條件是: the graph is weakly connected 弱連通的 the indegree and outdegree of each vertex are equal 每個(gè)頂點(diǎn)的出度和入度相等 24 2022/2/13 A directed multigraph having no isolated vertices has an Euler path but not an Euler circuit if and only if 一個(gè)沒(méi)有孤立頂點(diǎn)的有向多重圖含有歐拉通路但不含歐拉回路的充要條件是: the graph is weakly connected 弱連通的 the indegree and outdegree of each vertex are equal for all but two vertices, one that has indegree 1 larger than its outdegree and the other that has outdegree 1 larger than its indegree. 除去兩個(gè)頂點(diǎn)外每個(gè)頂點(diǎn)的出度和入度相等,其中一個(gè)頂點(diǎn)的出度比入度大 1,另一個(gè)頂點(diǎn)的入度比出度大 1. 25 2022/2/13 〖 Example 3〗 Determine whether the directed graph has an Euler path. Construct an Euler path if it exists. a c b d deg(v) deg+(v) a 1 2 b 2 2 c 2 2 d 3 2 Hence, the directed graph has an Euler path. Solution: 26 2022/2/13 Application A type of puzzle Draw a picture in a continuous motion without lifting a pencil so that no part of the picture is retraced. The equivalent problem: Whether the graph exist an Euler path or circuit. For example, 27 2022/2/13 二、 Hamilton paths and circuit 哈密頓通路和回路 Hamilton’s puzzle 28 2022/2/13 A Hamilton path in a graph G is a path which visits ever vertex in G exactly once. 哈密頓通路是一個(gè)訪問(wèn)圖 G中每個(gè)頂點(diǎn)次數(shù)有且僅有一次的通路 A Hamilton circuit (or Hamilton cycle) is a cycle which visits every vertex exactly once, except for the first vertex, which is also visited at the end of the cycle. 哈密頓回路,僅訪問(wèn)每個(gè)頂點(diǎn)一次,但除去始點(diǎn),這個(gè)始點(diǎn)同樣也是終點(diǎn)。 If a connected graph G has a Hamilton circuit, then G is called a Hamilton graph. 如果一個(gè)連通圖 G含有 哈密頓回路,那么 G是哈密頓圖 Note: 定義適用與所有類型的有向圖和無(wú)向圖 . 29 2022/2/13 The sufficient condition for the existence of Hamilton path and Hamilton circuit哈密頓通路和哈密頓回路存在的充分條件 【 Theorem 3】 DIRAC‘THEOREM 狄拉克定理 如果 G是帶 n個(gè)頂點(diǎn)的連通簡(jiǎn)單圖,其中 n=3,則 G有哈密頓 回路的充分條件是每個(gè)頂點(diǎn)的度都至少為 n/2 【 Theorem 4】 ORE‘THEOREM 奧爾定理 If G is a simple graph with n vertices with n=3 such that deg(u)+deg(v) = n for every pair of nonadjacent vertices u and v in G , then G has a Hamilton circuit. 如果 G是帶 n個(gè)頂點(diǎn)的連通簡(jiǎn)單圖,其中 n=3 ,并且對(duì)于 G中 每一對(duì)不相鄰的頂點(diǎn) u和 v來(lái)說(shuō),都有 deg(u)+deg(v) = n , 則 G有哈密頓回路。 30 2022/2/13 The necessary condition for Hamilton path and Hamilton circuit For undirected graph: The necessary condition for the existence of Hamilton path: ? G is connected。 ? There are at most two vertices which degree are less than 2. The necessary condition for the existence of Hamilton circuit: ? The degree of each vertex is larger than 1. Hamilton回路 ? 定義:若圖 G存在一條回路 P,它通過(guò) G的每個(gè)頂點(diǎn)各一次又回到起點(diǎn),則這回路稱為 G的 Hamilton回路 。 ? 若圖 G中存在 Hamilton回路,則稱 G為 Hamilton圖 。 ? 在圖 G中,若存在通過(guò)每個(gè)頂點(diǎn)各一次的道路,則稱這條道路為 Hamilton道路 。 ?定理 (充分條件 ) :設(shè)簡(jiǎn)單圖 G的頂點(diǎn)數(shù)為 n(n3),若 G中任