【總結】第一節(jié)導數(shù)的概念及運算第三單元導數(shù)及其應用基礎梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為________.(2)平均變化率是曲線陡峭程度的“________”,或者說,曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2025-11-03 17:12
【總結】§7.函數(shù)變化率在經濟中的應用1.幾個經濟學中常用的經濟函數(shù)函數(shù)的導數(shù),又稱為函數(shù)的變化率,在經濟上有很多的應用。(1)成本函數(shù)(2)需求函數(shù)(3)收益函數(shù)(4)利潤函數(shù)2.經濟學中的邊際函數(shù)在經濟管理上,往往需要判斷在現(xiàn)有的生產情況下,再增加生產量在經濟上是否有利。經濟管理人員
2025-04-29 00:34
【總結】導數(shù)的綜合應用預測數(shù)據庫知識數(shù)據庫技能數(shù)據庫經典例題備選1~56~1011~12知識數(shù)據庫技能數(shù)據庫預測數(shù)據庫經典例題備選1~56~1011~12知識數(shù)據庫技能數(shù)據庫預測數(shù)據庫經典例題備選1~56~1011~12知識數(shù)據庫技能數(shù)據庫
2025-02-21 12:14
【總結】基本初等函數(shù)的導數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2025-10-25 19:25
【總結】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關系五、小結思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41
【總結】Chapter2(2)偏導數(shù)與高階偏導數(shù)返回一.偏導數(shù)二.高階偏導數(shù)三.偏導數(shù)在經濟分析中的應用偏導數(shù)與高階偏導數(shù)目的要求:一.理解多元函數(shù)的偏導數(shù)的概念二.熟練掌握求一階和二階偏導數(shù)的方法重點:一.一階、二階偏導數(shù)計算三.熟練掌握偏導數(shù)
2025-01-14 07:37
【總結】一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?y?為了解決上面的問題
2025-04-28 23:00
【總結】要點梳理在(a,b)內可導函數(shù)f(x),f′(x)在(a,b)任意子區(qū)間內都不恒等于0.f′(x)≥0f(x)為;f′(x)≤0f(x)為.§導數(shù)的應用增函數(shù)減函數(shù)基礎知識自主學習(1)判斷
2025-10-25 20:18
【總結】1高階導數(shù)的定義萊布尼茨(Leibniz)公式小結思考題作業(yè)§高階導數(shù)第二章導數(shù)與微分幾個基本初等函數(shù)的n階導數(shù)2問題:變速直線運動的加速度.),(tss?設)()(tstv??則瞬時速度為是加速度a???)(ta定義)()(xfxf?的導數(shù)如果函數(shù)
2025-01-17 09:00
【總結】河海大學理學院《高等數(shù)學》高等數(shù)學(上)河海大學理學院《高等數(shù)學》第二章導數(shù)與微分高等數(shù)學(上)河海大學理學院《高等數(shù)學》問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10
【總結】l對一元函數(shù):導數(shù)描述了函數(shù)在處的瞬時變化率,它的幾何意義就是函數(shù)曲線上點處的切線的斜率。l對于多元函數(shù),我們同樣感興趣它在某處的瞬時變化率問題,以二元函數(shù)為例,我們分別討論:相對于以及相對于的瞬時變化率——偏導數(shù)偏導數(shù)的定義偏導數(shù)的定義設函數(shù)在點的某一鄰域
2025-04-28 23:20
【總結】1.平均變化率一基本概念問題2高臺跳水在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系)(2????ttth如果用運動員在某段時間內的平均速度描述其運動狀態(tài),那么:v在0≤t≤,在1≤t≤2
2025-10-09 14:03
【總結】課程目標設置主題探究導學1.“函數(shù)y=f(x)在x=x0處的導數(shù)值就是Δx=0時的平均變化率”.這種說法對嗎?提示:這種說法不對,y=f(x)在x=x0處的導數(shù)值是Δx趨向于0時,平均變化率無限接近的一個常數(shù)值,而不是Δx=0時的值,實際上,在平均變化率的表達式中,Δx≠0.y
2025-01-13 21:41
【總結】PQoxyy=f(x)割線切線T)斜率無限趨限趨近點P處切,時0無限趨限當(PQkx?))()(xxfxxfkPQ?????回顧設物體作直線運動所經過的路程為s=f(t)。以t0為起始時刻,物體在?t時間內的平均速度為
2025-11-08 20:20
【總結】導數(shù)的定義0()yfxx?設函數(shù)在點的某定義:個鄰域內0,(xxx?有定義當自變量在處取得增量點0),xxy??仍在該鄰域內時相應地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41